Синдром приобретенного иммунодефицита генная мутация

Генные болезни — это большая группа заболеваний, возникающих в результате повреждения ДНК на уровне гена. Термин употребляется в отношении моногенных заболеваний, в отличие от более широкой группы — Наследственные заболевания (см.)

Причины генных заболеваний[править | править код]

Большинство генных патологий обусловлено мутациями в структурных генах, осуществляющих свою функцию через синтез полипептидов — белков. Любая мутация гена ведет к изменению структуры или количества белка.

мутантный аллель → измененный первичный продукт → цепь биохимических процессов в клетке → органы → организм

В результате мутации гена на молекулярном уровне возможны следующие варианты:

  • синтез аномального белка;
  • выработка избыточного количества генного продукта;
  • отсутствие выработки первичного продукта;
  • выработка уменьшенного количества нормального первичного продукта.

Не заканчиваясь на молекулярном уровне в первичных звеньях, патогенез генных болезней продолжается на клеточном уровне. При различных болезнях точкой приложения действия мутантного гена могут быть как отдельные структуры клетки — лизосомы, мембраны, митохондрии, пероксисомы, так и органы человека.

Клинические проявления генных болезней, тяжесть и скорость их развития зависят от особенностей генотипа организма, возраста больного, условий внешней среды (питание, охлаждение, стрессы, переутомление) и других факторов.

Особенностью генных (как и вообще всех наследственных) болезней является их гетерогенность. Это означает, что одно и то же фенотипическое проявление болезни может быть обусловлено мутациями в разных генах или разными мутациями внутри одного гена. Впервые гетерогенность наследственных болезней была выявлена С. Н. Давиденковым в 1934 г.

Общая частота генных болезней в популяции составляет 1-2 %. Условно частоту генных болезней считают высокой, если она встречается с частотой 1 случай на 1000 новорожденных, средней — 1 на 10000 — 40000 и далее — низкой.

Моногенные формы генных заболеваний наследуются в соответствии с законами Г. Менделя. По типу наследования они делятся на аутосомно-доминантные, аутосомно-рецессивные и сцепленные с Х- или Y-хромосомами.

Классификация[править | править код]

К генным болезням у человека относятся многочисленные болезни обмена веществ. Они могут быть связаны с нарушением обмена углеводов, липидов, стероидов, пуринов и пиримидинов, билирубина, металлов и др. Пока ещё нет единой классификации наследственных болезней обмена веществ.

Болезни аминокислотного обмена[править | править код]

Самая многочисленная группа наследственных болезней обмена веществ. Почти все они наследуются по аутосомно-рецессивному типу. Причина заболеваний — недостаточность того или иного фермента, ответственного за синтез аминокислот. К ним относится:

  • фенилкетонурия — нарушение превращения фенилаланина в тирозин из-за резкого снижения активности фенилаланингидроксилазы;
  • алкаптонурия — нарушение обмена тирозина вследствие пониженной активности фермента гомогентизиназы и накоплением в тканях организма гомотентизиновой кислоты;
  • глазно-кожный альбинизм — обусловлен отсутствием синтеза фермента тирозиназы.

Нарушения обмена углеводов[править | править код]

  • галактоземия — отсутствие фермента галактозо-1-фосфат-уридилтрансферазы и накопление в крови галактозы;
  • гликогеновая болезнь — нарушение синтеза и распада гликогена.

Болезни, связанные с нарушением липидного обмена[править | править код]

  • болезнь Ниманна-Пика — снижение активности фермента сфингомиелиназы, дегенерация нервных клеток и нарушение деятельности нервной системы;
  • болезнь Гоше — накопление цереброзидов в клетках нервной и ретикуло-эндотелиальной системы, обусловленное дефицитом фермента глюкоцереброзидазы.

Наследственные болезни пуринового и пиримидинового обмена[править | править код]

  • подагра;
  • Синдром Леша-Найхана.

Болезни нарушения обмена соединительной ткани[править | править код]

  • синдром Марфана («паучьи пальцы», арахнодактилия) — поражение соединительной ткани вследствие мутации в гене, ответственном за синтез фибриллина;
  • мукополисахаридозы — группа заболеваний соединительной ткани, связанных с нарушением обмена кислых гликозаминогликанов.
  • Фибродисплазия — заболевание соединительной ткани, связанное с её прогрессирующим окостенением в результате мутации в гене ACVR1

Наследственные нарушения циркулирующих белков[править | править код]

  • гемоглобинопатии — наследственные нарушения синтеза гемоглобина. Выделяют количественные (структурные) и качественные их формы. Первые характеризуются изменением первичной структуры белков гемоглобина, что может приводить к нарушению его стабильности и функции (серповидноклеточная анемия). При качественных формах структура гемоглобина остается нормальной, снижена лишь скорость синтеза глобиновых цепей (талассемия).

Наследственные болезни обмена металлов[править | править код]

  • болезнь Коновалова-Вильсона и др.

Синдромы нарушения всасывания в пищеварительном тракте[править | править код]

  • муковисцидоз;
  • непереносимость лактозы и др.

См. также[править | править код]

  • Наследственные болезни
  • Наследственные болезни обмена веществ
  • Хромосомные болезни
  • Полигенные болезни

Литература[править | править код]

  • Бочков Н. П. Клиническая генетика. — М.: Медицина, 1997.
  • Тоцкий В. М. Генетика. — Одесса: Астропринт, 2002.

Источник

Какой из народов в нашей стране больше всех в мире защищен от вируса иммунодефицита? У 1 450 000 россиян есть иммунитет к ВИЧ. Эти люди просто не могут подхватить вирус. У каждого из неуязвимых — есть мутация на генном уровне. Полезные изменения происходят в гене ССR5.

Фото pixabay.com

Общую статистику подтверждает аналитика российских ученых из центра по изучению ДНК. Для анализа взяли данные 3000 пациентов. 30 из них — неуязвимы, благодаря генетическому сбою. Основываясь на этих данных, а также на 22-летнем опыте иностранных коллег, они утверждают:

«Каждый сотый россиянин неуязвим перед ВИЧ».

В чем связь между генами и ВИЧ?

CCR5 — белок человека, геном CCR5 и корецептор ВИЧ.

Еще в 1996 году ученые доказали, что вирус не может проникнуть в Ваш организм без ССR5. Белок ССR5 находится на поверхности клетки и помогает вирусу иммунодефицита оказаться внутри. Но у 1% жителей нашей страны участок этого гена потерян. Получается, вирус, попадая в организм человека просто не может проникнуть внутрь клетки. Заражения не происходит.

Если мутация прошла в обеих парных хромосомах, то неуязвимость к вирусу практически 100%. Если в только в одной, то «иммунитет» в вирусу иммунодефицита снижается. Низкая вероятность заболевания есть еще в том случае, если сам ВИЧ мутировал.

По данным ученых, ген мутировал у 1% представителей Европеоидной расы. Мутации в негроидной расе ведут себя по другому. К примеру, мутация гена, которая защищает от малярии жителей Южной Африки, наоборот, делает их на 11% более уязвимыми перед ВИЧ.

Читайте также:  Синдром тазовой боли у женщин симптомы

Российский иммунитет к ВИЧ подробно изучили в Институте иммунологии Федерального медико-биологического агентства России еще в 2008 году.

Поморы — самые неуязвимые

У поморов чаще всего в мире встречается мутация гена ССR5 — 3% в обеих хромосомах и в 30% случаев — в одной из хромосом. Только эта народность защищена от ВИЧ настолько сильно.

По последним данным переписи населения, поморов в России осталось всего 3113 человек. Из которых 2015 человек живут в Архангельской области.

Коренные русаки и татары

По подсчетам ученых, коренные русаки и татары — на втором и третьем месте по степени неуязвимости от ВИЧ. Исследователи условно предлагают считать русаками — жителей Вологодской области.

«Оказалось, что мутация CCR5delta32 есть в одной или двух парных хромосомах приблизительно у 10% десяти процентов из них. Интересно, что, следуя известной фразе «поскреби русского, найдешь татарина», эти люди по количеству мутаций оказались ровно посередине между поморами и татарами».

Самые незащищенные россияне:

«Наши исследования показывают, что у казахов, киргизов, чеченцев, тувинцев мутация CCR5 почти не встречается», — говорит Илья Кофиади, научный сотрудник лаборатории генетики гистосовместимости человека.

Как возникла эта мутация?

К сожалению, пока ученые могут лишь ответить на вопрос — когда это произошло. Александр Ракитько, руководитель отдела статистического анализа данных медико-генетического центра:

«Эта мутация возникла около тысячи лет назад среди викингов в Северной Европе. Ее широкое распространение на субконтиненте и отсутствие в Азии и Африке связано с тем, что она снижает вероятность заражения чумой и черной оспой, чьи эпидемии приводили к массовой гибели людей в средние века».

По косвенным признакам определить — есть у Вас мутация ССR5 или нет не получится. Здоровью она не вредит. Возможно «частички гена» в Вашей семье не хватает уже на протяжении нескольких десятков поколений.

Источник

Преимплантационная генетическая диагностика — возможность узнать о возможных рисках наследственных заболеваний.

Услуги и цены…

Узнать о предрасположенности к наследственным патологиям можно с помощью идентификации генов.

Подробнее об услуге…

Если в семье имелись случаи заболевания сахарным диабетом, имеет смысл воспользоваться услугой идентификации генов.

Подробнее об услуге…

Лекарственные средства могут повлиять на результаты идентификации генов методом полимеразной цепной реакции.

Подробнее…

«Это у нас в семье наследственное», — мы часто говорим так по отношению к самым разным вещам. Под понятие «наследственное» может попадать и цвет волос, и телосложение, и постоянные простуды. Особенно часто мы оправдываемся наследственностью, имея в виду болезни, что далеко не всегда соответствует действительности. Что же собой представляют генетические, или наследственные, заболевания, как их диагностируют и можно ли их предотвратить?

Что такое генетические болезни? Обременительное наследство

Для начала необходимо разобраться в терминах. Начнем с того, что генетические заболевания и заболевания, к которым выявлена наследственная предрасположенность, — разные понятия.

  • Генетические болезни обусловлены нарушениями в строении генома (отсюда другое название — моногенные заболевания). В качестве примера можно привести галактоземию. При этом заболевании плохо работают ферменты, которые превращают молочный сахар в глюкозу. Уже выявлен ген, «отвечающий» за развитие заболевания. Более того, выяснено, что если ребенок получает «дефектный» ген от одного из родителей, то ферментная система работает примерно на 50%, а если от обоих, то всего на 10%[1].
  • Заболевания, к которым у человека есть наследственная предрасположенность, зависят не только от генетики, но и от факторов внешней среды: того, где мы живем, сколько двигаемся, что едим. Например, у человека может быть склонность к атеросклерозу, но правильный образ жизни и рациональное питание помогают ему оставаться здоровым.

Чтобы понять принцип передачи наследственных заболеваний, надо вспомнить, что такое гены. Условно говоря, это некий набор «карт памяти», на каждой из которых «записаны» определенные данные об организме человека. Если же говорить научным языком, то ген — это фрагмент нашей ДНК. Совокупность генов (а их число доходит до 25 000[2]), представляющая собой плотно свернутую нить ДНК, — это хромосома. Всего у человека их 23 пары. Это весь наш генетический багаж, или иначе — геном.

Каждая из 23 хромосом имеет свою пару. Записанная в структуре одной хромосомы информация дублируется на парной. То есть любой признак, будь то цвет глаз или предрасположенность к сердечно-сосудистым заболеваниям, кодируется двумя генами. Они могут быть идентичными, но могут и отличаться (такие гены называют аллелями). Например, один из двух генов, определяющий цвет глаз, может «кодировать» серый оттенок, а второй — карий. Скорее всего, у носителя таких аллелей цвет глаз будет карий, так как ген, несущий эту информацию, является доминантным. Второй же ген (серый цвет глаз) более «слабый» — рецессивный[3].

Теперь разберемся в механизме наследования. Формируясь, зародыш получает половину хромосом от матери, а половину — от отца. Именно поэтому организм ребенка не копирует ни одного из родителей, а имеет свою индивидуальность. Передача хромосом, генов, а значит, и передача информации о наследственных заболеваниях, возможна по нескольким схемам:

  • аутосомно-доминантный. Если ребенок получает «сильный», доминантный, ген хотя бы от одного из родителей, то этот ген обязательно проявится. Таким образом передается, например, ахондроплазия — заболевание, при котором нарушается рост конечностей, а кости становятся ломкими[4].
  • аутосомно-рецессивный. Здесь чуть сложнее — признак проявляется только в том случае, если ребенок получил от родителей два «слабых», рецессивных, гена. Вероятность проявления заболевания ниже, чем в первом случае. Таким образом передаются по наследству фенилкетонурия, альбинизм и другие заболевания[5].
  • кодоминантный. При этом типе наследования проявляются оба гена — и доминантный, и рецессивный. Примером может быть серповидно-клеточная анемия: наличие активных доминантного и рецессивного генов приводит к тому, что в крови обнаруживается и нормальная, и патологическая форма гемоглобина.
  • наследование, сцепленное с полом. Известно, что половые хромосомы у мужчин и женщин различаются: у женщин две Х-хромосомы, а у мужчины — X и Y. К половым хромосомам «привязаны» некоторые важные признаки и информация о заболеваниях. Например, гемофилией, как известно, болеют почти исключительно мужчины[6]: если в Х-хромосоме у мужчин содержится ген, отвечающий за патологию, то Y-хромосома никак его не компенсирует, там этого гена нет[7]. По этому же принципу передаются дальтонизм, мышечная дистрофия Дюшена и т.д.
Читайте также:  Синдром при сахарном диабете 1 типа

К наиболее распространенным генетическим заболеваниям относятся:

  • дальтонизм — около 850 случаев на 10 000;
  • расщепление позвоночника — 10–20 случаев на 10 000 человек;
  • синдром Клайнфельтера (эндокринные нарушения, которые могут стать причиной мужского бесплодия) — 14–20 на 10 000;
  • синдром Дауна — 9–13 на 10 000;
  • синдром Тернера (болезнь, которая приводит к половому инфантилизму) — около 7 на 10 000;
  • фенилкетонурия (нарушение метаболизма аминокислот) — до 3,8 на 10 000;
  • нейрофиброматоз (заболевание, при котором у больного возникают опухоли) — около 3 на 10 000;
  • муковисцидоз — 1–5 на 10 000;
  • гемофилия — до 1,5 на 10 000[8].

Направления генетических обследований

Сегодня врачи выявляют генетические заболевания с высокой точностью, так как передовые технологии позволяют буквально заглянуть внутрь гена, определить, на каком уровне произошло нарушение.

На заметку
В зарубежной прессе уже появляются сообщения о том, что ведутся эксперименты по применению методов редактирования генома для борьбы с некоторыми заболеваниями. В частности, журнал Nature упоминал о подобных экспериментах в области борьбы с ВИЧ[9].

Есть несколько направлений обследований.

Диагностическое тестирование

Диагностическое тестирование проводится, если у пациента есть симптомы или особенности внешнего развития, служащие отличительной чертой генетического заболевания. Перед направлением на диагностическое тестирование проводят всесторонний осмотр пациента. Одна из отличительных черт наследственных заболеваний — это поражение нескольких органов и систем[10], поэтому при выделении целого ряда отклонений от нормы врач направляет пациента на молекулярно-генетическую диагностику.

Так как многие наследственные заболевания (например, синдромы Дауна, Эдвардса, Патау) связаны с нарушением количества хромосом (кариотипа), то для их подтверждения проводят кариотипирование, то есть изучение количества хромосом. Для анализа требуются клетки крови, которые в течение нескольких дней выращивают в особой среде, а затем окрашивают. Так врачи выделяют и идентифицируют каждую хромосому, определяют, нарушен ли их количественный состав[11], отмечают особенности внешнего строения.

Для выявления мутаций конкретных генов применяется метод ПЦР — полимеразной цепной реакции. Его суть состоит в выделении ДНК и многократном воспроизводстве интересующего исследователя участка. Как отмечают специалисты, преимущество ПЦР — его высокая точность: здесь почти невозможно получить ложноположительный результат. Метод удобен еще и тем, что для исследования может быть взята любая ткань организма[12].

Пренатальная и предимплантационная диагностика

Если вы знаете, что у вас в семье или в семье супруга были случаи наследственных болезней, то, конечно, захотите выяснить, какова вероятность проявления их у ваших детей. Врачи часто предлагают будущим родителям сделать пренатальную диагностику. А если пара использует вспомогательные репродуктивные технологии, то и предимплантационную генетическую диагностику плода (ПГД).

ПГД нужно сделать, если возраст матери превышает 35 лет, если у пары уже были прерывавшиеся беременности, а также родились дети с наследственными заболеваниями. Также врачи рекомендуют делать ПГД, если родители являются носителями генетического недуга. В этом случае в семье есть случаи проявления патологии, но сами супруги здоровы. А вот вероятность проявления болезни у ребенка может достигать 50%, причем ПГД помогает точно определить этот показатель. Анализ проводится, когда эмбрион, полученный «в пробирке», вырастает до стадии 6 или 8 клеток [13].

Пренатальная генетическая диагностика проводится, когда ребенок еще находится в утробе матери. Предположить наличие генетических отклонений врач может на основании анализов крови матери или по результатам УЗИ плода. Поэтому на начальном этапе беременная проходит трехмаркерный скрининг: в ее крови определяют уровень АФП, β-хорионического гонадотропина и эстриола. Если их концентрация отлична от нормы, то врач рекомендует выполнить генетическое обследование ребенка. Для этого с помощью пункции берут амниотическую жидкость и проводят кариотипирование плода. Единственный недостаток этого метода — долгий период ожидания результатов. Если последний будет негативным, то женщина просто может не успеть принять решение о прерывании беременности. Есть и альтернатива — анализ ворсин хориона. Его можно сделать на раннем сроке, но получение материала представляет угрозу для протекания беременности[14].

В последнее время появилась еще одна возможность пренатального обследования плода — неинвазивный пренатальный ДНК-тест (НИПТ-тест). В этом случае нужна только кровь матери. Точность теста достигает 99%, причем можно сделать обследование как на самые часто встречающиеся генетические патологии, так и полное исследование плода[15].

Определение носительства

Рассматривая виды наследования генетических заболеваний, мы упомянули об аутономно-рецессивном способе и о наследовании, сцепленном с полом. Человек может быть здоров, но в его генотипе при этом присутствует патологический ген. Выявить это помогает анализ на носительство. Многие делают его на стадии планирования беременности, чтобы вычислить вероятность рождения ребенка с генетическими заболеваниями.

Читайте также:  Афобазол и алкогольный абстинентный синдром

Например, такая болезнь, как гемофилия, проявляется только у мужчин, женщины не болеют, но могут быть носителями. Поэтому женщинам, у которых есть родственники с проблемами свертывания крови, перед зачатием рекомендуется сделать скрининг гетерозиготного носительства, чтобы определить вероятность рождения мальчика с гемофилией[16].

Предсказательное генотипирование

И даже если у человека нет никаких признаков наследственных заболеваний, он все равно может пройти генетическую диагностику. Зачем? Дело в том, что только лишь нарушениями в генах определяются далеко не все наследственные заболевания. Ко многим патологиям может быть предрасположенность. Досимптоматическая диагностика, или ДНК-идентификация, выявляет ее[17]. Во многих клиниках это обследование носит название «генетический паспорт», его достаточно сделать один раз, потому что полученные результаты со временем не меняются.

По итогам ДНК-идентификации врач дает пациенту рекомендации: начиная от образа жизни и диеты и заканчивая профессиональными рисками. Следование им помогает избежать развития многих заболеваний.

Виды генетических заболеваний человека и ключевые методы их выявления

В зависимости от того, чем вызвано генетическое заболевание, врач выбирает и методы обследования пациента. Рассмотрим основные группы патологий.

Хромосомные болезни

Причиной этих генетических заболеваний служит нарушение в количественном составе хромосом или в их строении. Например, при наличии дополнительной (третьей) 21-й хромосомы формируется синдром Дауна. Причиной синдрома Шершевского-Тернера является наличие всего одной Х-хромосомы у женщин. А если у мужчины половые хромосомы присутствуют в сочетании XXY, а не XY, то ему ставится синдром Клайнфельтера.

Многие хромосомные нарушения, например, удвоение или утроение, несовместимы с жизнью. Чаще всего зародыши погибают в утробе, а родившиеся дети живут всего несколько дней[18]. В то же время бывают случаи, когда у человека есть разные виды клеток: несущие патологические хромосомы и не имеющие этих нарушений. Это явление носит название «мозаицизм», и тогда патология может проявляться в меньшей степени или практически не проявляться[19].

Для диагностики проводят кариотипирование. В качестве примера можно привести синдром Клайнфельтера — редкое генетическое заболевание, которым страдают мужчины. Внешне оно выражается в евнухоподобной внешности, увеличении грудных желез, нарушении половой функции. Подробное изучение состава половых хромосом помогает определить, какое именно нарушение произошло у пациента (лишних Х-хромосом может быть несколько). В зависимости от кариотипа варьируется и степень выраженности признаков заболевания [20].

Может быть нарушено и строение хромосом, а не только их количество. В процессе деления клеток, если «что-то пойдет не так», происходит утрата части хромосомы или, напротив, удвоение какого-либо участка. Хромосома может развернуться на 180 градусов (инверсия), или ее концы образуют кольцо. Например, синдром кошачьего крика — это следствие перестройки пятой хромосомы. Дети, родившиеся с такой патологией, специфически кричат (звук напоминает мяуканье кошки). Обычно они погибают в первые годы жизни, так как патология проявляется многочисленными пороками развития внутренних органов[21].

Пациентам с хромосомными заболеваниями назначают цитогенетическое обследование. Обычно ему подвергаются и родители, чтобы установить, имеет ли место наследуемая патология или же это единичный случай[22].

Генные мутации

Нарушения могут произойти не в хромосоме, а лишь на одном ее участке. Тогда мы говорим о генной мутации. Эти заболевания называются моногенными, к ним, в частности, относятся многие нарушения метаболизма: муковисцидоз, фенилкетонурия, андрогенитальный синдром и т.д. Многие из этих заболеваний могут быть выявлены при обязательном скрининге всех младенцев в роддоме. Ребенок, у которого есть отклонения от нормы, может быть направлен на дополнительное генетическое обследование. А принятые вовремя меры позволяют в некоторых случаях предотвратить развитие серьезных нарушений.

В то же время существуют заболевания, вызванные генными мутациями, которые не проявляются ярко и однозначно. В качестве примера можно привести синдром Вольфрама, который дебютирует как сахарный диабет в раннем возрасте, затем проявляется ухудшением зрения или слуха. Врач может подтвердить синдром только по результатам генетической экспертизы.

Мультифакториальные генетические болезни

Они выявляются при ДНК-идентификации. Анализ подтверждает наличие или отсутствие предрасположенности практически к любой патологии: от сахарного диабета до формирования различных зависимостей[23]. Так как роль генетических факторов и факторов внешней среды в развитии заболеваний различна не только для каждой патологии, но и для каждого пациента[24], рекомендации здесь могут быть только строго индивидуальными, сделанными на основании результатов анализов.

В последнее время нередки появления информации об экспресс-тестах, позволяющих определить нарушения в структуре ДНК непосредственно в день анализа. В частности, ученые из Дании создали «светящийся ДНК-тест», который дает результат в течение шести часов[25].

Где можно сдать анализы?

Наследственные заболевания отличаются большим разнообразием: это могут быть патологии, вызванные мутацией генов, нарушением строения хромосом, сочетанием нескольких факторов, в том числе факторов внешней среды. Именно поэтому генетическое обследование лучше выполнять в лаборатории, которая предоставляет максимально широкий спектр услуг. Желательно, чтобы в лаборатории проводилось и кариотипирование, и ПЦР, и пренатальная диагностика, и анализ на носительство.

Второй важный момент — наличие в лаборатории современного сертифицированного оборудования. Оно позволяет делать анализ максимально подробным и полным. Популярные экспресс-системы дают результат в тот же день, однако глубокий анализ генотипа им недоступен. Специализированные лаборатории предоставляют результаты через 2–3 дня, однако это более подробное и детализированное исследование, позволяющее точно установить и наличие заболевания, и предрасположенность к тем или иным патологиям.

Стоимость обследования в специализированной лаборатории во многом зависит от объема: при составлении генетического паспорта цена обследования может достигать 75 000–80 000 рублей[26].

Источник