Синдром фрагильной ломкой х хромосомы

Синдром фрагильной ломкой х хромосомы thumbnail

Генетические особенности синдрома ломкой Х-хромосомы

Среди группы наследственных болезней есть два заболевания, относящихся к самым частым причинам интеллектуальной недостаточности. Самая известная и наиболее распространённая патология – синдром Дауна, связанный с наличием лишней 21-ой хромосомы в геноме человека. В этой статье мы расскажем о втором по распространенности наследственном заболевании, которое приводит к умственной отсталости, а также может сопровождаться другими клиническими проявлениями.

Синдром ломкой X-хромосомы или синдром Мартина-Белл является результатом нарушения в гене FMR1 (fragile X mental retardation-1), который расположен на Х-хромосоме и играет важную роль в появлении и развитии нервных связей, обучении и запоминании. Частота этого синдрома среди мальчиков составляет 1:4000.

Синдром фрагильной ломкой х хромосомы

Так называемая «ломкость» X-хромосомы проявляется в том, что хромосома выглядит нетипично при специальном окрашивании, как будто один кусок отделился, хотя физически она остается цельной. Генетическая основа этого явления заключается в увеличении числа тринуклеотидных повторов CGG в гене FMR1, расположенном на X-хромосоме.

У здоровых людей число повторов в этом гене колеблется от 5 до 54. Если повторов больше 200, то наработка белка с гена FMR1 нарушается, что приводит к развитию синдрома Мартина-Белл и клиническому проявлению заболевания. Премутационное состояние — это количество повторов CGG от 55 до 200. В таком состоянии заболевание у людей в типичной форме не проявляется, но чем больше повторов в этом гене у носителя, тем больше вероятность того, что у ее или его детей количество повторов будет больше 200 и заболевание разовьется. В случае носительства премутации при формировании половых клеток количество повторов может увеличиваться, поэтому если у родителя количество повторов от 55 до 200, то высока вероятность рождения ребенка с мутантным геном FMR1 и синдромом Мартина-Белл. При этом носительство премутационного состояния будущим папой и мамой неравнозначно по вероятности возникновения мутантного аллеля у их детей: если носитель – мама, то вероятность значительного увеличения числа повторов гораздо выше. Количество повторов от 45 до 54 является промежуточной формой, которая не имеет никакого влияния на здоровье человека, но может приводить к проблемам у будущих поколений, как и в случае премутационного состояния гена.

Синдром фрагильной ломкой х хромосомы

Важно учитывать, что наследование и развитие заболевания зависит от пола, так как ген FMR1 находится на Х-хромосоме. У мужчин только одна Х-хромосома, которую они получают от матери. Поэтому, в случае, если эта одна хромосома оказалась «ломкой», у них проявляется заболевание. У женщин две Х-хромосомы, однако активно работает только одна из них. Поэтому наличие одной Х-хромосомы с мутантным геном FMR1 может не проявляться клинически, в случае инактивации именно «ломкой» хромосомы, или приводить к развитию заболевания в 30-50% случаев. Мужчина с ломкой Х-хромосомой может передать её всем дочерям, но ни одному из сыновей. Женщина с мутантной хромосомой имеет шансы передать её как сыновьям, так и дочерям с равной вероятностью.

Премутационное состояние гена влияет как на судьбу потомков носителя такого гена, так и непосредственно на его здоровье:

  1. Развитие первичной недостаточности яичников (FXPOI) (снижение овариального резерва и наступление менопаузы до 40 лет). Мутация FMR1 является причиной преждевременного истощения яичников у 5% женщин с этим диагнозом. Среди носительниц премутации примерно у четверти развивается это состояние. Оно влияет не только на общие репродуктивные возможности, но и на подбор протокола стимуляции при ВРТ, так как часто оказывается причиной бедного ответа яичников на стимуляцию. Интересно, что по данным, полученным в центре Genetico, хотя бедный ответ яичников на стимуляцию влияет на число получаемых в цикле эмбрионов, он не приводит к увеличению доли анеуплоидных эмбрионов.

  2. Тремор/атаксия, ассоциированные с ломкой Х-хромосомой (FXTAS). Это состояние чаще развивается у мужчин: при носительстве премутации мужчиной проявляется в 33% случаев, а при носительстве премутации женщиной – лишь в 5-10%. Синдром FXTAS начинает проявляться в пожилом возрасте. Наблюдается тремор, шаткая походка, может страдать речь.

Метод диагностики, используемый в лаборатории Genetico, основан на использовании полимеразной цепной реакции с особым набором праймеров, позволяющих не только детектировать нормальное, премутационное и мутационное состояния, но и точно определить количество повторов в случаях, когда их меньше 200. Такая диагностика позволяет выявить синдром ломкой X-хромосомы на молекулярном уровне, а также оценить вероятность рождения ребенка с этим синдромом и возможность развития у пациента расстройств, связанных с увеличенным количеством повторов в гене FMR1. Такая диагностика также позволяет детектировать наличие AGG повторов среди повторов CGG. Полагают, что участки AGG, прерывающие длинную последовательность из CGG повторов, придают ДНК устойчивость и снижают риск увеличения количества повторов в следующем поколении.

Читайте также:  Синдром тазобедренного сустава у детей

Генетический тест, определяющий количество повторов в гене FMR1, рекомендуется пройти в первую очередь женщинам с синдромом преждевременного истощения яичников или с выявленной неслучайной инактивацией Х-хромосомы (косвенный признак), семьям, в которых есть сыновья с интеллектуальной недостаточностью. Также анализ состояния гена FMR1 необходим:

1) женщинам с репродуктивными проблемами или нарушениями фертильности, связанными с повышенным уровнем фолликулостимулирующего гормона (ФСГ)

2) пациентам с интеллектуальной недостаточностью и их родственникам

3) тем, у кого в семье были случаи синдрома ломкой Х-хромосомы или умственной отсталости без точного диагноза

4) женщинам, у родственников которых наблюдались нарушения, связанные с премутационным состоянием FMR1

5) пациентам с поздно проявившимся тремором и мозжечковой атаксией (нарушения согласованности работы мышц из-за поражения систем мозга, управляющих движением мышц).

В случае обнаружения бессимптомного носительства мутации в гене FMR1 у женщины может быть рекомендовано использование донорских ооцитов или проведение преимплантационной генетической диагностики (ПГД) с целью исключить возможность проявления синдрома у ребенка. Также важно правильно оценивать риск рождения больного ребенка в случае премутационного состояния гена FMR1 у будущих родителей. В таком случае по результатам теста рекомендуется консультация врача-генетика.

Автор: Очир Мигяев

Стажер лаборатории Genetico

Источник

Ломкие сайты хромосом, или фрагильные сайты (от англ. fragile — ломкий, хрупкий) — участки хромосом человека, склонные к образованию разрывов, которые выявляются при цитогенетическом анализе препаратов метафазных хромосом. Различают редкие, или наследуемые, и обычные, или конститутивные, ломкие сайты. Ломкие сайты имеются во всех хромосомах человека, в целом их насчитывается около сотни[1]. Молекулярная природа этого явления ещё не известна.

Номенклатура[править | править код]

Ломкие сайты обозначают в соответствии с тем, в каком хромосомном сегменте они находятся, например, ломкий сайт, ассоциированный с синдромом Мартина — Белл, имеет обозначение fra(X)(q27.3). Кроме того, существуют названия для ломких сайтов, утверждаемые комитетом по номенклатуре HUGO. Например, вышеупомянутый ломкий сайт fra(X)(q27.3) имеет название FRAXA, что означает «ломкий сайт на хромосоме X в локусе А», причём буква «А» означает, что это был первый описанный ломкий сайт для хромосомы Х[2].

Наследуемые сайты ломкости[править | править код]

Явление повышенной ломкости хромосом в определённых сайтах было обнаружено в 70-х годах XX века. При цитогенетическом анализе метафазных хромосом у некоторых индивидов было обнаружено, что в большинстве проанализированных клеток один и тот же участок хромосом имел разрыв или пробел в окрашивании. Частота встречаемости отдельных ломких сайтов в популяции не превышает обычно 5 %[2]. Для наследуемых ломких сайтов характерно менделевское наследование[1]. Выявлению большей части наследуемых ломких сайтов способствует культивирование клеток in vitro в среде, обеднённой фолиевой кислотой.

Большинство наследуемых фрагильных сайтов не связано с какой-либо клинически значимой патологией, кроме наследуемого сайта ломкости FRAXA, который наблюдается у больных синдромом хрупкой Х-хромосомы (Синдром Мартина — Белл). До развития молекулярно-генетических методов диагноз у пациентов с синдромом Мартина — Белл верифицировали по наличию ломкого сайта в локусе Xq27.3[3]. Наследуемый фрагильный сайт FRAXA находится в 5′-нетранслирумой области гена FMR1 и содержит повтор из триплетов ЦГГ. Аномальная длина этого повтора у больных вызывает гиперметилирование промотора гена FMR1 и, как следствие, нарушение экспрессии гена[4].

Конститутивные фрагильные сайты[править | править код]

Конститутивные фрагильные сайты — это разрывы и пробелы в окрашивании хромосом, которые появляются в определённых хромосомных сайтах в клетках у всех людей при умеренном репликативном стрессе, например, при применении в небольших концентрациях ингибиторов репликации ДНК[5]. Это гораздо более обширный класс фрагильных сайтов по сравнению с наследуемыми сайтами.

Конститутивные фрагильные сайты вызывают особенный интерес, потому что они являются «горячими точками» для хромосомных перестроек при различных раковых заболеваниях. Наиболее ярким примером является ломкий сайт FRA3B, располагающийся в хромосомном сегменте 3p14.2. Этот ломкий сайт находится в гене-супрессоре опухолевого роста FHIT[en], который часто утрачивается в опухолях различных локализаций, включая раки кишечника, головы-шеи, лёгких и раке молочной железы[2].

Природа явления ломкости хромосом до конца не изучена. Известно, что конститутивные фрагильные сайты обычно ассоциированы с позднореплицирующимся хроматином[6]. Они нередко находятся в пределах очень длинных генов (около 1 млн пар оснований и более), таких как FHIT и WWOX[en][7]. Многие обычные сайты ломкости являются тканеспецифичными. Недавние исследования связывают ломкость хромосом с дефицитом сайтов инициации репликации в этих районах. Предполагают, что недостаточность сайтов инициации в конце S-фазы клеточного цикла может приводить к локальной незавершенности процесса репликации при репликативном стрессе и формировании в некоторых случаях двунитевого разрыва ДНК[8].

Читайте также:  Синдром пустого турецкого седла диагностика

Примечания[править | править код]

  1. 1 2 Durkin S. G., Glover T. W. Chromosome fragile sites. // Annu Rev Genet. — 2007. — Т. 41. — С. 169-192. — doi:10.1146/annurev.genet.41.042007.165900.
  2. 1 2 3 Генетика человека по Фогелю и Мотулски / М. Р. Спейчер, С. Е. Антонаракис, А. Г. Мотулски. — 4-е издание. — СПб: Н-Л. — С. 138-139. — 1056 с. — ISBN 978-5-94869-167-1.
  3. Oostra B. A. et al. Guidelines for the diagnosis of fragile X syndrome. National Fragile X Foundation (англ.) // Journal of medical genetics. — Vol. 30, no. 5. — P. 410-413.
  4. Naumann A. et al. A Distinct DNA-Methylation Boundary in the 5′-Upstream Sequence of the FMR1 Promoter Binds Nuclear Proteins and Is Lost in Fragile X Syndrome (англ.) // The American Journal of Human Genetics. — 2009. — Vol. 85, no. 5. — P. 606-616.
  5. Debatisse M. et al. Common fragile sites: mechanisms of instability revisited (англ.) // Trends in genetics : TIG. — 2012. — Vol. 28, no. 1. — P. 22-32.
  6. Wang L. et al. Allele-specific late replication and fragility of the most active common fragile site, FRA3B (англ.) // Human molecular genetics. — 1999. — Vol. 8, no. 3. — P. 431-437.
  7. Smith D. I. et al. Common fragile sites, extremely large genes, neural development and cancer //Cancer letters. – 2006. – V. 232. – №. 1. – P. 48-57.
  8. Letessier A. et al. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site //Nature. – 2011. – V. 470. – №. 7332. – P. 120-123.

Источник

Хромосомы фрагильной (ломкой) X синдром (синдром Мартина-Белла).

Это заболевание встречается в среднем у одного из 1200 мужчин и, возможно, 1 из 800 женщин. Это самая распространенная причина умственной отсталости, и по распространенности среди различных форм умственной отсталости она уступает только синдрому Дауна. Данное заболевание относят к моногенным, но закономерности наследования этой болезни необычны для Х-сцепленного признака.

В значительном числе случаев, от 20 до 40%, умственная отсталость у мальчиков передавалась от матери-носителя поврежденной Х-хромосомы.

В этих 20-40% мать-носитель получила свою поврежденную хромосому не от матери, как обычно, а от вполне внешне здорового отца. Вторая странность этой болезни — так называемый парадокс Шермана — заключается в различной степени пенетрантности мутации синдрома ломкости Х-хромосомы в зависимости от места носителя в родословной. Наконец, существует третья странность. Среди женщин-носителей мутантной хромосомы примерно треть оказывается в различной степени пораженной заболеванием, и, вдобавок, дети таких пораженных женщин с большей вероятностью оказываются больными, чем дети интеллектуально нормальных женщин-носителей. Эти больные женщины получают свою поврежденную Х-хромосому от матери, а не от отца. В целом, получается так, что дочери нормальных мужчин-передатчиков с большей вероятностью имеют больных детей, чем матери нормальных мужчин-передатчиков. Здоровые мужчины-передатчики передают свою поврежденную Х-хромосому дочерям, которые становятся носителями, но здоровы, а вот сыновья этих дочерей оказываются с высокой вероятностью больными (парадокс Шермана).

В определенных условиях культивирования клеток, полученных от пациентов с такими симптомами, на дистальном (удаленном от центромеры) конце длинного плеча Х-хромосомы (Xq28) отделялся фрагмент от ее основной части. Поэтому болезнь и была названа синдромом ломкости Х-хромосомы. Этот сайт на хромосоме называют FraXA от англ, fragile. Такого рода поведение различных хромосом достаточно хорошо известно, хотя причины его неясны. Все подобные сайты так и называются fragile, а тот, о котором идет речь, еще и ХА, потому что он расположен на Х-хромо- соме, но там есть еще и другие хрупкие сайты. Наблюдать этот цитогенетический эффект трудно.

В связи с этим был весьма понятен интерес к клонированию гена. Физическое выделение гена, ответственного за данную патологию, было осуществлено благодаря координированным усилиям множества групп. Им оказался ген FMR1. Было также установлено, что в развитии заболевания играет определяющую роль эффект так называемой динамической мутации. Относительно недавно был выявлен новый класс так называемых динамических мутаций, или мутаций экспансии, связанных с нестабильностью числа тринуклеотидных повторов в функционально значимых частях генов. Болезнь развивается лишь тогда, когда число повторов в этих сайтах превосходит определенный критический уровень. Наследование таких мутаций отличается от классического менделевского типа. Для них характерны: различная пенетрантность в сочетании с неполным доминированием; геномный импринтинг (различия фенотипических проявлений в зависимости от того, получена мутация от матери или от отца) и феномен антиципации — нарастание тяжести проявления заболевания в последующих поколениях. Этот тип мутаций пока найден только у человека и не зарегистрирован ни у одного вида млекопитающих или других хороню изученных организмов.

Читайте также:  Скачать книгу любовь сирота припятский синдром

Классическим примером мутаций экспансии является синдром ломкой Х-хромосомы (FraXA), обусловленной присутствием удлиненных CGG-повторов в 5′-нетранслируемой регуляторной области FMR 1-гена (Xq27.3). В дальнейшем аналогичные динамические мутации были описаны и при 7 других наследственных заболеваниях, контролируемых генами, расположенными на разных хромосомах.

Причиной повреждающего действия одних «динамических» мутаций является блок генной экспрессии, то есть потеря функции (coss-of-function mutation), тогда как другие мутации того же типа, связанные с нейродегенеративными заболеваниями, ведут к появлению белковых продуктов с аномальными функциями (мутации типа gain-of-function). Для каждой болезни «экспансии» разработан свой вариант диагностики, основанный на полимеразной цепной реакции.

Еще по теме Хромосомы фрагильной (ломкой) X синдром:

  1. Хромосомы 18 трисомии синдром
  2. Хромосомы X моносомии синдром
  3. Хромосомы 1 3 трисомии синдром
  4. Хромосомы ХХУ синдром
  5. Хромосомы 21 трисомии синдром
  6. СИНДРОМ ДИСЕМІНОВАНОГО ВНУТРІШНЬОСУДИННОГО ЗГОРТАННЯ КРОВІ (ДВЗ-СИНДРОМ) В АКУШЕРСТВІ
  7. Синдром тестикулярної фемінізації (синдром нечутливості до дії андрогенів)
  8. Синдром надколенннково-бедренной боли (пателлофеморальный болевой синдром)
  9. Синдром Шерешевского—Тернера
  10. Синдром 47.ХУУ
  11. Наследственный нефрит. Синдром Альпорта
  12. Синдром Дауна
  13. Синдром трисомии X
  14. HELLP-синдром
  15. Нефротический синдром
  16. Синдром Кушинга
  17. ГІПЕРТЕРМІЧНИЙ СИНДРОМ

Источник

При
данной хромосомной аномалии рождение
живых детей не наблюдается, они погибают
на ранних стадиях эмбриогенеза.

Болезни, обусловленные хромосомными аберрациями Синдром «Крика кошки»

Впервые
синдром описан Леженом в 1964 г. (Франция).

Частота
встречаемости
:
1:50000 новорожденных .

Причина:
делеция (отрыв) короткого плеча 5-й
хромосомы, с утратой от 1/3
до ½ короткого плеча. Болеют чаще
девочки.

Клиника:
синдром получил название от специфического
плача детей, напоминающего кошачье
мяуканье. Это обусловлено аномалиями
в строении гортани: узкая гортань,
уменьшенный надгортанник, мягкие хрящи,
необычные складки слизистой оболочки.
С возрастом этот симптом исчезает, но
остается склонность к простудным
заболеваниям верхних дыхательных путей.
Лицо у таких больных лунообразное, с
широко поставленными глазами. Отмечается
микроцефалия (уменьшенный размер мозга),
нередко — четырехпалостъ, пороки развития
сердечно-сосудистой системы,
желудочно-кишечного тракта, а также
аномалии почек (недоразвитие,
подковообразные почки, удвоение лоханок).
У всех имеется значительное снижение
интеллекта.

Продолжительность
жизни небольшая. Большинство умирает
в первые годы. Около 10% доживают до 10
лет.

Диагностика:
кариотипирование — укорочение короткого
плеча 5-й хромосомы, 46, 5р –; дерматоглифика
— поперечная складка на ладони.

Синдром «Филадельфийской» хромосомы

Впервые
описан в г. Филадельфии США в 1961 г.
Тооджем.

Причина:
делеция половины длинного плеча у 21-й
хромосомы, так считалось до 1970г. За
последние тридцать лет характер аберрации
уточнился – транслокация делетированного
участка длинного плеча 22 хромосомы на
длинное плечо 9-ой хромосомы, а небольшого
участка 9-ой на 22-ую – t
(9; 22) (q
34; q
11). При этом образуется структура,
обладающая онкогенными свойствами.

Клиника:
развивается хронический миелолейкоз,
что выражается в безудержном размножении
гранулоцитов (один из видов лейкоцитов),
в итоге в периферической крови появляется
много незрелых форм этих лейкоцитов.

Диагностика:
кариотипирование, обнаружение
соответствующей аберрации.

Синдром Мартина-Белла (иди синдром фрагильной х-хромосомы)

Частота
встречаемости

1:2000-4000 новорожденных.

Причина:
делеция (отрыв) небольшого концевого
(дистального) участка длинного плеча
Х-хромосомы, где располагается мутантный
ген ломкости. С помощью методов
молекулярно-генетического анализа в
нетранслируемой области гена FMR-I
(fragile
mental
retardation)
была обнаружена экспансия (увеличение)
нестабильных тринуклеотидных повторов
до 1000 раз (в норме их от 6 до 42 повторов).

Клиника:
важнейший клинический симптом —
олигофрения (слабоумие). Считается, что
болеют только мужчины. Однако есть
сведения, что около 30% женщин, гетерозиготных
носителей ломкого гена, также страдают
олигофренией. У мужчин, помимо олигофрении,
имеются и другие характерные признаки:
увеличенные в объеме яички, большие
уши, выпуклый лоб, выступающая челюсть,
речевые аномалии, среди которых широко
распространено заикание.

Диагностика:
кариотипирование — отрыв конечного
участка длинного плеча в Х-хромосоме,
что выявляется лишь при культивировании
лимфоцитов в условиях дефицита фолиевой
кислоты и внешне напоминает «спутник»
длинного плеча. Наиболее точный метод
– молекулярно генетическая диагностика.
Возможна пренатальная диагностика.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник