Два тельца барра у женщин синдром
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 мая 2018;
проверки требует 1 правка.
Ядро фибробласта женщины, окрашенное флуоресцентным красителем. Стрелкой указано тельце Барра
Тельце Барра (X-половой хроматин) — свёрнутая в плотную (гетерохроматиновую) структуру неактивная X-хромосома, наблюдаемая в интерфазных ядрах соматических клеток самок плацентарных млекопитающих, включая человека. Хорошо прокрашивается осно́вными красителями[1].
Из двух X-хромосом генома любая в начале эмбрионального развития может инактивироваться, выбор осуществляется случайно. У мыши исключением являются клетки зародышевых оболочек, также образующихся из ткани зародыша, в которых инактивируется исключительно отцовская X-хромосома[2].
Таким образом, у самки млекопитающего, гетерозиготной по какому-либо признаку, определяемому геном X-хромосомы, в разных клетках работают разные аллели этого гена (мозаицизм). Классическим видимым примером такого мозаицизма является окраска черепаховых кошек — в половине клеток активна X-хромосома с «рыжим», а в половине — с «чёрным» аллелем гена, участвующего в формировании меланина. Коты черепаховой окраски встречаются крайне редко и имеют две X-хромосомы (анеуплоидия)[3].
У людей и животных с анеуплоидией, имеющих в геноме 3 и более X-хромосом (см., напр., синдром Клайнфельтера), число телец Барра в ядре соматической клетки на единицу меньше числа X-хромосом.
Анализ полового хроматина используется для:
1. Анализа по клеткам особи ее пола, когда та не доступна для исследования (пренатальная диагностика пола плода, суд.-мед. экспертиза и т.п.).
2. Выявление пола, если тот не ясен (напр., при определении истинного или ложного гермафродитизма).
3. Проверка соответствия фенотипа генотипу организма (напр., при обследовании женщин на спортивных соревнованиях).
4. Определения пола плода внутриутробно, когда имеются подозрения на наличие заболевания сцепленного с полом (напр., гемофилия, некоторые формы мышечной дистрофии и др.), с целью предотвращения рождения неизлечимо больного ребенка.
5. Используется для предварительной диагностики отклонений в числе или структуре половых хромосом, когда у исследуемого имеются нарушения полового развития.
Ход анализа полового хроматина:
1. Получение клеточного материала. Источника – разнообразные ткани, но предпочтительны те, что не нужно культивировать in vitro.
Для определения Х-хроматина у взрослого человека используют чаще всего мазки со слизистой оболочки щеки, реже слизистой оболочки влагалища, а также клетки волосяных фолликулов. Перинатальная диагностика проходит с использованием амниотических клеток.
Для определения численности У-хроматина используется выше перечисленные ткани, а также сперматозоиды, а также культивируемых лимфоцитах.
В целом для анализа Х-хроматина и У-хроматина идеально подходят однослойные культуры клеток, обычно фибробластов.
2. Фиксация препаратов раствором метанола или смесью этанола и уксусной кислоты (3:1) или исключительно этанолом.
3. Дегидратация путем переноса (ТОЛЬКО для анализа телец Барра) препарата из одного раствора в другой с выдержкой в каждом в течение 5 минут: в спирте 70°, в спирте 50°, в дистиллированной воде I, в дистиллированной воде II.
4. Гидролиз (ТОЛЬКО для анализа телец Барра) в НСl (необязательно).
5. Окрашивание полового хроматина. Методы окраски X- и Y-хроматина различны. Первый вид хроматина окрашивается препаратами на основе нефлюоресцирующими красителямей: основным фуксином, тионином, ацетоорсеином, толуидиновым синим и др. Второй вид окрашивается флюорохромами — производными акридинового оранжевого: акрихином, акрихин-ипритом, акрихин-пропилом. Препараты выдерживаются в краситиле от 30 минут до 12 часов.
Препараты Х-хроматина высушивают и изучают с масляной иммерсией в проходящем свете. Препараты У-хроматина заключают в специальный буферный р-р и изучают в ультрафиолетовом свете с помощью люминесцентного микроскопа. Анализ проводят на разъединенных, распластанных клетках. Срезы тканей для определения полового хроматина используют лишь тогда, когда невозможно получить мазки или препараты-отпечатки среза органа.
1. Микроскопирование.
2. Интерпретация результатов.[4]
Источники[править | править код]
Источник
Синдром Шерешевского-Тернера 45, ХО
Синдром Шереше́вского — Тернера — хромосомная болезнь, сопровождающаяся характерными аномалиями физического развития, низкорослостью и половым инфантилизмом.
Синдром Шерешевского-Тернера или дисгенезия гонад – это нарушение развития половых желез вызванное аномалией половых хромосом. Развитие половых желез нарушается уже в раннем периоде развития зародыша. Этот синдром встречается с частотой одна на три тысячи родившихся девочек. Во время деления половых клеток родителей нарушается расхождение половых хромосом в результате чего вместо нормального количества Х-ромосом (а в норме у женщины их две) , зародыш получает только одну Х-хромосому. Набор хромосом получается неполным.
У ребенка с синдромом Шерешевского-Тернера возникает первичное недоразвитие половых органов. Вместо яичников образуются тяжи из соединительной ткани, матка недоразвита. Этот синдром может сочетаться с недоразвитием других органов. Уже при рождении девочки обнаруживают утолщение кожных складок на затылке, типичный отек кистей рук и стоп. Часто ребенок рождается маленьким, с низкой массой тела. В раннем детском возрасте у ребенка характерный внешний вид:
рост маленький
маленькая нижняя челюсть
оттопыренные уши
короткая шей с крыловидными складками
низко расположен нижняя линия роста волос на шее
широкая грудная клетка с далеко расставленными сосками
соски втянуты
часто искривление рук в области локтевых суставов
выпуклые ногти на коротких пальцах рук.
В период полового созревания вторичные половые признаки не развиваются (молочные железы недоразвиты, оволосение на лобке и в подмышечных впадинах не выражено) . Менструация отсутствует.
У одной трети пациентов присутствуют пороки развития других органов. Часто это пороки со стороны сердечно-сосудистой системы (незаращение межжелудочковой перегородки, открытый Боталлов проток,) , пороки развития мочевых путей (недоразвитие почек, удвоение мочеточников, удвоение и подковообразная почка) .
Синдром Шерешевского-Тернера может сопровождаться косоглазием, опущением века, дальтонизмом. Скачок роста в подростковом периоде отсутствует и конечный рост больных не превышает 150 см.
Окончательный диагноз устанавливается на основании исследования кариотипа больных. Важным в диагностике синдрома Шерешевского — Тернера является отсутствие полового хроматина в клетках букального эпителия,
Известно, что в соматических клетках женского организма одна Х-хромосома в интерфазе не активна, она спирализована и образует половой хроматин, который обнаруживается у ядерной оболочки. В клетках мужского организма полового хроматина нет, так как у них только одна Х-хромосома и она функционирует в интерфазе. В сегментоядерных лейкоцитах периферической крови женщин обнаруживаются палочкообразные выпячивания ядер — барабанные палочки или тельца Барра, которые трактуются как спирализованные Х-хромосомы. В крови здоровых мужчин и у женщин с синдромом Шерешевского — Тернера барабанные палочки не обнаруживаются. Таким образом, на основании обнаружения полового хроматина в клетках слизистой щеки и барабанных палочек в лейкоцитах периферической крови можно предварительно поставить диагноз синдрома Шерешевского — Тернера, но окончательно диагноз устанавливается на основании исследования кариотипа, где обнаруживается 45 хромосом (45, ХО) .
Источник
Синдром женского гипогонадизма — хроническое хромосомное заболевание характеризующееся многочисленными половыми и соматическими нарушениями.
Обусловлено отсутствием женщин второй Х-хромосомы (всего в наборе 45 хромосом).
Моносомия по Х-хромосоме возникает чаще всего в результате оплодотворения аберрантной яйцеклетки, лишенной Х-хромосомы, спермием с Х-хромосомой.
Один из важных признаков синдрома Шерешевского Тернера — низкий рост (новорожденные девочки имеют небольшую массу тела и размеры, рост взрослых —130— 140 см). Короткая шея и кожные складки от затылка к надплечьям придают больным «вид сфинкса» (рис. 59). Впубертатном возрасте отчетливо выявляется резкий половой инфантилизм — гениталии, яичники и грудные железы недоразвиты. Менструации отсутствуют. Выделение эстро по сравнению с нормой снижено в 10—12 раз. Больные не способны к деторождению. Около 10% женского бесплодия имеют в основе синдром Шерешевского Тернера. Характерны также органические изменения в виде птоза, катаракты, миопии, остеопороза, врожденных вывихов. Интеллект большинства больных близок к норме, в части случаев имеется небольшая умственная отсталость.
Рис. Половой хроматин (1) и барабанные палочки (2) в лейкоцитах крови при различном наборе хромосом.
Как и при других хронических заболеваниях, имеются изменения дерматоглифики — кожного рисунка ладоней и стоп (сгибательные складки ладоней, расположение три-радиуса и др.).
Количественные и структурные аномалии известны и по другим хромосомам (трисомия 13-й хромосомы — синдром Патау, трисомия 18-й хромосомы — синдром Эдварса и др.) и тоже сопровождаются широким спектром тяжелых нервно-психических, эндокринных и соматических нарушений умственной отсталостью, уродствами в строении скелета, атрофии мышц, поражениями нервной системы. При нарушениях набора или структурных аномалиях по первым группам хромосом (1—12) организм обычно нежизнеспособен, по остальным (за исключением трисомии 21) мало жизнеспособен, и в большинстве случаев смерть наступает внутриутробно или в первые годы жизни ребенка.
Синдром нерасхождения хромосом может возникнуть не только во время гаметогенеза, но и в начальных стадиях дробления зиготы. В последнем случае часть клеток организма будет иметь нормальный, а часть — измененный хромосомный комплекс (явление мозаицизма). Клиническая картина нарушений в этих случаях бывает менее тяжелой.
Полисомия по X-Y-хромосомам (XXX, ХХХХ, ХХХХХ, XXXY, XXXXY, XXXXYYY) тоже ведет к снижению интеллекта, инфантильности агрессивности (XYY), отклонениям в физическом развитии, причем с увеличением добавочных хромосом X и в кариотипе отмечается и увеличение изменений. Так, трисомия-Х (XXX) и дисо-мия-Y (XYY) не сопровождаются бесплодием, выраженными нарушениями умственного и физического развития. Для тетра- и пентасомии-Х (ХХХХ и ХХХХХ) и трисомии-Y (XYYY)характерны грубые изменения интеллекта, соматические аномалии, недоразвитые гениталии и т. д.
Нарушения в хромосомном наборе яйцеклетки отмечаются преимущественно у женщин в возрасте 35-40 лет, вероятно, вследствие возрастных изменений метаболизма, «перезревания» клеток. Другие причины, могущие изменять нормальный процесс мейоза: интоксикации (алкоголь, курение и др.), инфекции, особенно вирусные, облучение, нервно-психические и физические перенапряжения и т. д.
Диагностика синдрома Шерешевского Тернера, хромосомных болезней основана на клинических данных и исследовании (специальными методами) хромосомного набора — кариотипа и полового хроматина. Для определения кариотипа используют как прямые, так и непрямые методы исследования. В первом случае материал, взятый из костного мозга, лимфатических узлов или других тканей, изучают сразу же после получения. Однако прямой метод информативен только тогда, когда в материале имеется достаточное количество метафаз митоза, так как только в этой фазе хромосомы приобретают присущие им особенности строения и возможна их точная идентификация.
В настоящее время широко применяют непрямые методы исследования, когда взятую культуру (лимфоциты периферической крови и др.) помещают в питательную среду для культивирования. Продолжительность исследования зависит от скорости накопления делящихся клеток и может занять от 3 сут до 2 нед. Однако в соматических клетках человека имеются две морфологические структуры, определяющие пол — Х-хроматин (тельца Барра и барабанные палочки) у женщин и Y-хроматин у мужчин.
Для исследования полового хроматина X и полового хроматина Y берут обычно лейкоциты крови или соскоб слизистой рта. В норме в клетках женского организма при определенных способах окраски вблизи ядерной мембраны образуется интенсивно окрашиваемое тельце — половой хроматин, или тельце Барра (по имени ученого Барра, который в 1949 г. обнаружил в ядрах клеток кошек глыбку гетерохроматина, отсутствующую в клетках котов). Для выявления глыбок полового хроматина наиболее распространен экспресс-метод окраски по Сандерсу с использованием 2% раствора уксуснокислого ацетоорсеина и последующей иммерсионной микроскопией. Кроме того, выявляется еще и так называемая барабанная палочка, причем число телец хроматина (телец Барра) и барабанных палочек на единицу меньше числа Х-хромосом.
При синдроме Клайнфелтера (XXY) в клетках тела определяют тельце полового хроматина и барабанную палочку; при синдроме трисомии по хромосоме X (XXX) — два тельца полового хроматина и две барабанных палочки; тетрасомии (ХХХХ) — три тельца Барра и три барабанных палочки и т. д. (рис.). При синдроме Шерешевского — Тернера половой хроматин и барабанные палочки, наоборот, отсутствуют (вследствие наличия только одной Х-хромосомы).
Можно исследовать и Y-хроматин — интенсивно светящееся тельце (точка), обнаруживаемое в ядрах клеток у мужчин при определенном методе окраски. Определение Y-хроматина может быть осуществлено при использовании флюоро-хромных красителей (акрихина или акрихин-иприта) с последующей люминесцентной микроскопией. Число Y-телец соответствует количеству Y-хромосом в кариотипе — при синдроме XYY —два светящихся тельца, синдроме XYYY — три и т. д.
Метод определения полового хроматина быстрее и проще, чем исследование набора хромосом (кариотипа), поэтому он применяется в качестве одного из скрининг-тестов при массовых обследованиях населения для выявления людей с аномалиями половых хромосом, диагностике пола при так называемых интерсексуальных состояниях (особенно при ложном женском гермафродитизме), для пренатального установления пола и т. д. Определение Х-хроматина в комплексе с определением Y-хроматина дает возможность выявить набор половых хромосом без кариотипирования. Пренатальная диагностика наследственных заболеваний у беременных осуществляется с использованием амниоцентеза, который производится обычно на 13—18-й неделях беременности и позволяет исследовать клетки амниотической жидкости на цитогенетические и метаболические дефекты. Метод амниоцентеза дает возможность диагностировать все хромосомные болезни, а в сочетании с рентгенографией и ультрасонографией и многие пороки развития нервной системы. Показания к амниоцентезу: наличие аномалии у живорожденных или мертворожденных детей беременной женщины, беременность в возрасте старше 40 лет, инфекционные вирусные заболевания, облучение, травма или интоксикации в I триместре беременности
Статья на тему Синдром Шерешевского Тернера
Источник
Половой хроматин. Тельца Барра
Х-хроматин (тельце Барра) представляет собой хромоцентр величиной около 1 мкм, красящийся всеми основными ядерными красителями более интенсивно, чем остальные хроматиновые структуры ядра. Фельген-положительная реакция свидетельствует о большой концентрации в нем ДНК.
Локализация Х-хроматина в ядре различна. В большинстве тканей он находится на внутренней поверхности ядерной оболочки и может иметь треугольную, плоско-выпуклую, трапециевидную, U-образную или гантелевидную форму. Иногда Х-хроматин имеет вид утолщения или зубца ядерной мембраны, соединенного с ядрышком тонкой хроматиновой нитью. В веретеновидных и палочковидных ядрах Х-хроматин располагается на одном из полюсов ядра.
Реже Х-хроматин располагается на ядрышке или в нуклеоплазме, при этой локализации он обладает сферической формой и трудно отличим от других хромоцентров, имеющих такой же размер, но неспецифических для пола. Поэтому в целях диагностики половой принадлежности клеток большинство исследователей учитывают хромоцентры, расположенные только у ядерной мембраны.
Положение Х-хроматина может меняться в одних и тех же клетках в зависимости от их функционального состояния, а также в процессе онтогенеза.
Х-хроматин обнаружен в клетках различных тканей у многих млекопитающих; у грызунов (хомяки, крысы, мыши, морские свинки) хроматиновые структуры ядер представлены большим количеством хромоцентров, затрудняющих выявление Х-хроматина. У человека половые различия в строении ядер установлены практически во всех тканях и органах.
Происхождение Х-хроматина. В процессе клеточного цикла хромосомы претерпевают закономерные преобразования, которые состоят в спирализации и деспирализации хромосом и их репродукции. В интерфазе максимально деспирализованные хромосомы образуют ядро с относительно гомогенным содержимым. Репродукция (синтез ДНК) хромосом происходит только в деспирализованном состоянии в период S-интерфазы.
Спирализуясь, хромосомы вступают в профазу митоза и достигают наибольшей спирализации в метафазе митоза и мейоза. При этом они обладают минимальной специфической активностью. Вместе с тем установлено, что хромосомы всегда неравномерно спирализованы по длине и разделяются на гетерохроматические и эухроматические районы. Морфологически эти районы различаются по интенсивности окраски и структурной организации.
Эухроматические районы в интерфазном ядре деспирализуются, в то время как гетерохроматические имеют тенденцию оставаться в спирализованном компактном состоянии в виде хромоцентров с высоким содержанием ДНК. Спирализованность гетерохроматических районов сопровождается неактивным состоянием генов, содержащихся в них. Эта особенность свойственна также некоторым эухроматнческим районам с высоко функционально дифференцированными генами. Будучи спирализованными в стадии интерфазного ядра, эухроматические районы становятся также генетически неактивными.
Гетерохроматизация — универсальный механизм генетической инактивации хромосомных участков независимо от того, относятся ли они к гетерохроматическим или к эухроматнческим районам. Следовательно, хромоцентры, обнаруживаемые в интерфазном ядре, могут быть образованы как гетерохроматином, так и эухроматином. Одним из таких хромоцентров является Х-хроматин.
Еще Ваrr и Bertram высказали предположение о связи феномена Х-хроматина с Х-хромосомами. С тех пор Х-хромосомная природа Х-хроматина подтверждена и уточнена данными многочисленных исследователей.
Х-хроматин образован одной из Х-хромосом женской клетки, находящейся в гетерохроматизированном состоянии. Будучи спирализованной, эта хромосома генетически неактивна. В разных клетках сомы у женских особей, по принципу случайности, Х-хроматнн образует Х-хромосома, полученная либо от отца, либо от матери. Следовательно, клетки женского организма мозаичны по функции Х-хромосомы: в одних активна отцовская, в других материнская хромосома. Образование полового хроматина в женских клетках обусловлено генетически.
Это подтверждается тем, что в раннем периоде развития эмбриона человека, когда по виду гонад еще нельзя определить пол, яйцевые оболочки зародыша мужского пола не имеют Х-хроматина, несмотря на воздействие гормонов матери. У зародыша женского пола Х-хроматин появляется на 16-й день развития, когда в эмбрионе насчитывается 2500—5000 клеток.
— Также рекомендуем «Х-хроматин в клетках различных тканей. Наличие Х-хроматина в клетках»
Оглавление темы «Деление клеток. Половой хроматин»:
1. Обмен веществ в клетках. Раздражимость клеток
2. Телофаза и интерфаза митоза. Первое деление мейоза клеток
3. Второе деление мейоза. Амитоз и эндомитоз
4. Дифференциация клеток. Регенерация клеток
5. Способы регенерации клеток. Старение и гибель клетки
6. Удаление мертвых клеток из организма. Хромосомный пол
7. Половой хроматин. Тельца Барра
8. Х-хроматин в клетках различных тканей. Наличие Х-хроматина в клетках
9. Х-хроматин в лейкоцитах. Половые различия лейкоцитов
10. Половые виды лимфоцитов. Y-хроматин клеток организма
Источник